Biosynthesis of Austocystin D in *Aspergillus ustus*. A Carbon-13 Nuclear Magnetic Resonance Study

R. Marthinus Horak, Pieter S. Steyn, and Robert Vleggaar *

National Chemical Research Laboratory, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, Republic of South Africa

The assignment of the natural-abundance ${}^{13}C$ n.m.r. spectrum of austocystin D, a mycotoxin produced by *Aspergillus ustus* MRC 1163, allowed a study of its biosynthetic origin. The complete ${}^{13}C{-}^{13}C$ coupling pattern in austocystin D enriched from $[1,2{-}^{13}C_2]$ acetate has been determined and confirms that no randomisation of labelling in ring A occurs during the anthraquinone \longrightarrow xanthone conversion in the biosynthetic pathway.

The acute awareness of the importance of mycotoxins to human and animal health arose from the discovery of a group of potent hepatocarcinogens (the aflatoxins) in 1960.¹ It subsequently became evident that the biological activity of the aflatoxins, their biosynthetic congeners, *e.g.* versicolorin A (1) and sterigmatocystin (2),² and the products of their *in vivo* metabolism, *e.g.* aflatoxin M₁, could be related to the presence of the bisdihydrofuran moiety.³

Steyn and Vleggaar ^{4,5} reported the structure elucidation of the austocystins A—I, dihydrofuro[3',2':4,5]furo[3,2-b]xanthone † metabolites isolated from cultures of *Aspergillus ustus*, CSIR 1128 grown on maize. These xanthones possess a linear fusion of the xanthone and bisdihydrofuran moieties in contrast to the closely related metabolite sterigmatocystin (2) which has an angular fusion. The strain of *A. ustus* MRC 1163 used in the present study proved a rich source of metabolites and, when grown on maize, produces the austalides ⁶ and the biosynthetically related compounds averufin, averufanin, versicolorin C, 8-deoxy-6-O-methylversicolorin A, three differently substituted 3a,12a-dihydro-5*H*-furo[3',2':4,5]furo-[3,2-*b*]xanthen-5-one compounds, 7-chloro-2-(3-furyl)-1,3,8trimethoxyxanthone, and austocystin A, B (3), D (4), and H.⁷

The unambiguous assignment of the signals in the protonnoise-decoupled (p.n.d.) natural-abundance ¹³C n.m.r. spectrum of austocystin B (3) and D(4) and the biosynthetic origin of the carbon framework of this family of compounds are presented in this report. The ¹³C n.m.r. data for the bisdihydrofuran moiety of austocystin D (4) serves as a unique model for the corresponding structure in the rare mycotoxins aflatoxin M₁⁸ and aspertoxin.⁹

The assignments of the ¹H n.m.r. spectral signals of austocystin D (4) as presented in the Table are based on protonproton coupling patterns, chemical shift considerations, and nuclear Overhauser enhancement (n.O.e.) experiments on 3a,4,6-tri-O-methylaustocystin D.⁴ An unambiguous assignment of the 11- and 12a-proton in austocystin D could only be achieved by heteronuclear ¹³C{¹H} selective population inversion (SPI) experiments.¹⁰

The results obtained from single-frequency n.O.e., p.n.d., and off-resonance proton-decoupled spectra, SPI experiments,¹⁰ and the chemical shift values and (C,H)-coupling constants of related compounds, *viz.* tajixanthone (5),¹¹ sterigmatocystin (2),¹² and versicolorin A (1),¹³ led to the assignment of the signals in the natural-abundance ¹³C n.m.r. spectrum of austocystin D (see Table). The reported deuterium isotope shifts ¹⁴ are the separations between doubled signals observed in the p.n.d. ¹³C n.m.r. spectrum when the exchangeable protons were partially exchanged with deuterium upon

addition of a mixture of ${}^{2}\text{H}_{2}\text{O}-{}^{1}\text{H}_{2}\text{O}$ (1:1). The main parameters used in SPI studies 10 are (C,H)-couplings, and normally only one-, two-, and three-bond (C,H)-couplings are observed. The reported (C,H)-couplings over four bonds are *ca*. 1 Hz, 15 and need not be considered at the power levels used in the SPI experiments (*ca*. 5 Hz).

Single-frequency n.O.e. and off-resonance proton-decoupled ¹³C n.m.r. spectra revealed that the twenty-two carbon resonances observed in the p.n.d. ¹³C n.m.r. spectrum of austocystin D (4) are due to two methyl, two methylene, six methine, and twelve quaternary carbon atoms.

The residual splittings observed in a series of off-resonance proton-decoupled ¹³C experiments enabled us to correlate the signals of the proton-bearing carbon atoms with specific proton resonances.¹⁶ With this relationship the resonances due to C-3 and C-7 were unambiguously assigned.

[†] Xanthone is xanthen-9-one.

Carbon	(4)						(2)
atom	δ_c^a	¹ J(CH)/Hz	>1J(CH)/Hz	¹ J(CC)/Hz ^b	δμ	J(HH)/Hz	(3) δ _c 4
2	148.8 Ddd	196.6	12.1, 5.1	75.2	6.79d	3.0	145
3	107.3 Dd (br)	180.3	11.9	75.9	5.76d	3.0	103
3a	89.8 Sd (br)		6.8	39.6			47
3b	112.3 S (br)			60.3			110
4	158.5 S (br)			63.0			157
4a	103.7 Sm			62.8			103
5	185.5 S			56.5			185
5a	107.3 Sd (br)		5.8	56.3			107
6	159.5 Sada		10.7, 4.9, 2.6	66.4			159
7	111.0 Ddd	161.3	7.6, 3.7	66.4	6.70d	8.5	111
8	138.0 Dt	160.5	4.3	59.1	7.56d	8.5	138
9	121.3 Sm			59.1			121
9a	153.5 Sdt		11.3, 4.2				154
10a	158.9 Sd		3.9	73.5			158
11	90.9 D	170.3		74.4	6.53s		90
11a	167.4 St		3.8	60.1			166
12a	118.6 Dt	184.2	6.2	39.6	6.43s		114
1′	24.5 Tm	128.7		34.3	2.67-2.90m		24
2′	44.5 Tm	122.5		34.5	1.56—1.83m		44
3′	70.2 S (br)			39.1			70
4' °	29.3 Qm	125.0		39.3	1.27s		29
5' °	29.2 Qm	125.0		38.7	1.27s		29

Table. N.m.r. data for austocystin B (3) and D (4)

^a Recorded on a Varian XL-100 spectrometer at 25.1 MHz. Values are relative to internal Me₄Si; solvent (CD₃)₂CO. Capital letters refer to the pattern resulting from directly bonded (C,H) couplings [¹J(CH)] and small letters to that from (C,H) couplings over more than one bond [^{>1}J(CH)]. ^b Obtained from the p.n.d. ¹³C n.m.r. spectrum of austocystin D derived from [1,2-¹³C₂]acetate recorded on a Bruker WM-500 spectrometer at 125.76 MHz; solvent (CD₃)₂CO. ^c These resonances are obscured by the (CD₃)₂CO signals. The chemical shift and ¹J(CC) values were obtained from the spectrum recorded in CDCl₃ on a Bruker WH-360 spectrometer at 90.56 MHz. The assignments may be interchanged.

The resonances of the carbon atoms of the bisdihydrofuran moiety were assigned by comparison of the chemical shift and one-bond (C,H) values with the corresponding carbon atoms in sterigmatocystin (2)¹² and versicolorin A (1).¹³ The resonances at δ_c 148.8 [¹J(CH) 196.6 Hz] and 118.6 p.p.m. [¹J(CH) 184.2 Hz] could therefore be assigned to C-2 and C-12a, respectively. The directly bonded (C,H) coupling constant of 184.2 Hz for the δ_c 118.6 p.p.m. resonance distinguishes it from the aromatic proton-bearing carbon resonances. As a consequence the resonance at δ_c 90.9 p.p.m. [¹J(CH) 170.3 Hz] could be allocated to C-11. In an SPI experiment, a π -pulse with γ H₂ 5 Hz applied at a position 6 Hz downfield from the low-field transition of the doublet due to 2-H (δ_H 6.79) affected the signals at δ_c 107.3 (C-3) and 89.8 p.p.m. (C-3a).

Chemical shift considerations dictate that the resonance at

 $\delta_{\rm C}$ 185.5 p.p.m. must be attributed to the C-5 carbonyl carbon atom whereas the six resonances in the $\delta_{\rm C}$ 148—168 p.p.m. region are due to the six oxygen-bearing sp² carbon atoms. Application of a selective π -pulse (γ H₂ 5 Hz) to the low-field ¹³C transition of 8-H ($\delta_{\rm H}$ 7.56) affected the resonance at $\delta_{\rm C}$ 138.0 p.p.m. thereby confirming the assignment of C-8. Similarly, the application of a π -pulse (γ H₂ 5 Hz) to the highfield transition of the 8-H doublet at $\delta_{\rm H}$ 7.56 affected the resonances at $\delta_{\rm C}$ 159.5 and 153.5 p.p.m. which are therefore due to C-6 and C-9a. The observed deuterium isotope shift of -0.20 p.p.m. for the signal at $\delta_{\rm C}$ 159.5 p.p.m. assigns this resonance to C-6 and that at $\delta_{\rm C}$ 153.5 p.p.m. is therefore due to C-9a.

When a π -pulse (γ H₂ 5 Hz) was applied at a position 2 Hz downfield from the singlet at δ_{H} 6.53 the resonances at δ_{C} 158.9 and 167.4 p.p.m. due to C-10a and C-11a, as well as those at δ_c 103.7 and 112.3 p.p.m. due to C-4a and C-3b, were affected. The transitions which were selectively pulsed must arise from 11-H as the carbon atoms are all either two or three bonds removed from this proton. Conversely, selective irradiation of the transitions of the proton at $\delta_{\rm H}$ 6.43 in a ¹³C{¹H} SPI experiment affected the resonance at δ_{C} 167.4 p.p.m. The results of the above two SPI experiments allow an unambiguous assignment of 11-H (δ_{H} 6.53) and 12a-H ($\delta_{\rm H}$ 6.43) and show that the resonance at $\delta_{\rm C}$ 167.4 p.p.m. must be due to C-11a as this carbon atom is both two bonds removed from 11-H and three bonds from 12a-H. As a consequence the resonance at δ_c 158.9 p.p.m. could be allocated to C-10a. The assignment of the resonances at δ_c 103.7 and 112.3 p.p.m. to C-4a and C-3b, respectively, follows from a

comparison of the chemical shift values of the corresponding carbon atoms in austocystin B (3) (see Table) and was confirmed by the ${}^{1}J(CC)$ values in the p.n.d. ${}^{13}C$ spectrum of austocystin D derived from $[1,2{}^{-13}C_2]$ acetate (see Table).

The resonance of the remaining oxygen-bearing sp² carbon atom at δ_c 158.5 p.p.m. is, by elimination, assigned to C-4, an assignment which is confirmed by the observed deuterium isotope shift of 0.20 p.p.m. for this resonance upon addition of ${}^{2}\text{H}_{2}\text{O}-{}^{1}\text{H}_{2}\text{O}$ (1 : 1) to the sample.

Exchange of the phenolic hydroxy-group protons for deuterium caused the resonance at δ_c 111.0 p.p.m., due to C-7, to change its fine structure as the 7.6 Hz splitting was now absent. In addition the resonances at δ_c 107.3, 112.3 (C-3b), and 103.7 p.p.m. (C-4a) were simplified. The resonance at δ_c 107.3 p.p.m. must be due to C-5a and this was confirmed by an SPI experiment. Application of a π -pulse (γ H₂ 5.0 Hz) to the 7-H transitions affected *inter alia* the resonances at δ_c 107.3 and 121.3 p.p.m., which could thus be allocated to C-5a and C-9, respectively. This result shows that the assignment of the corresponding carbon atoms in tajixanthone ¹⁴ should be interchanged.

The resonances of the carbon atoms of the 3-hydroxy-3methylbutyl side-chain were assigned on the basis of the chemical shift values and multiplicities in the single-frequency n.O.e. spectrum.

Biosynthetic Studies.—Cultures of A. ustus (MRC 1163) were grown in static culture on a modified Czapek–Dox medium. Studies on the course of fermentation indicated that austocystin D production commenced on day 7 and reached a maximum fourteen days after inoculation of the medium. Preliminary feeding experiments with [1-¹⁴C]-acetate as the precursor established the optimum conditions for ¹³C enrichment at each individual acetate-derived carbon atom of austocystin D on feeding ¹³C-labelled acetate, as well as the yield of the metabolite. A good yield of austocystin D and a good incorporation (0.17%) of precursor but high dilution values (105, assuming eleven labelled positions) were obtained by feeding cultures of A. ustus every 12 h from day 7 to day 14 with sodium acetate to a total amount of 1.0 g l⁻¹.

The p.n.d. spectrum of $[1^{-13}C]$ acetate-derived austocystin D showed eleven enhanced carbon signals, *viz.* those due to C-3, -4, -5, -6, -8, -9a, -10a, -11a, -12a, -1', and -3'. The arrangement of intact acetate units in austocystin D was studied by addition of $[1,2^{-13}C_2]$ acetate to cultures of *A. ustus.* The measured ¹J(CC) values obtained from the p.n.d. ¹³C n.m.r. spectrum of austocystin D derived from $[1,2^{-13}C_2]$ acetate are given in the Table and prove the presence of the following intact acetate units: C-2⁻C-3, C-3a⁻C-12a, C-3b⁻C-11a, C-4⁻C-4a, C-5⁻C-5a, C-6⁻C-7, C-8⁻C-9, C-10a⁻C-11, C-1'⁻C-2', and C-3'⁻C-4'. It is of interest to note that the C-5' resonance also exhibits low-intensity satellite signals due to (C,C)-coupling with C-3' as a result of multiple labelling.

The resonances of the carbon atoms of ring A show only a single one-bond (C,C)-coupling apart from C-9a which appears as a single, enriched resonance with no evidence of (C,C)-coupling. This result implies that no randomisation of labelling occurs in ring A during the biosynthesis of austocystin D and that a symmetrical intermediate in the formation of the xanthone system from an anthraquinone precursor can be excluded. A similar conclusion has been reported for sterigmatocystin (2).^{2,17} Randomisation of labelling in the anthraquinone \longrightarrow xanthone conversion has been observed for both tajixanthone (5) ¹⁸ and ravenelin ¹⁹ and means that ring A must have been symmetrical and free to rotate at some stage during the biosynthesis of these compounds.

Experimental

M.p.s were determined on a Kofler hot-stage apparatus. ¹³C N.m.r. spectra were recorded, unless stated otherwise, on a Varian XL-100-15 F.T. spectrometer equipped with a 16K Varian 620i computer and a gated gyrocode decoupler. ¹H N.m.r. spectra (90 MHz) were recorded on a Varian EM 390 spectrometer.

Incorporation of Labelled Precursors.—Preliminary experiments on cultures of A. ustus (MRC 1163) grown in static culture on a modified Czapek–Dox medium²⁰ showed that austocystin D production commenced on day 7 and reached a maximum 14 d after inoculation of the medium.

To each of ten 500-ml Erlenmeyer flasks containing the 7day old growth of A. ustus on the modified Czapek-Dox medium (100 ml) was added sodium [1-13C]acetate (90 atom% ¹³C; 1.0 g in total) each 12 h over a period of 6 d from day 7 to day 13. The mycelium was harvested on day 14, macerated with acetone in a Waring blender, and filtered. The filtrate was evaporated and the residue partitioned between aqueous methanol (90%) and n-hexane. The methanol solution was concentrated and the residue was partitioned between chloroform and water. The chloroform solution was evaporated to give a residue (524 mg) which contained austocystin D. The austocystin D was separated from the crude material by column chromatography on silica gel with chloroformmethanol (98: 2 v/v) as eluant. Crystallization from benzene gave austocystin D (4) (14 mg), m.p. 113-115 °C (lit.,4 114-116 °C).

In a separate experiment when sodium $[1,2^{-13}C_2]$ acetate (C-1: 93.1 atom%; C-2: 92.0 atom%) (1.0 g) was used as precursor, 10.5 mg of austocystin D were obtained.

Acknowledgements

We thank Dr. T. J. Simpson, University of Edinburgh, for the recording of ¹³C spectra on the Bruker WH-360 spectrometer and Dr. A. E. de Jesus for microbiological assistance.

References

- 1 For a review see L. A. Goldblatt, 'Aflatoxin: Scientific Background, Control and Implications,' Academic Press, New York, 1969.
- 2 P. S. Steyn, R. Vleggaar, and P. L. Wessels in 'The Biosynthesis of Mycotoxins,' ed. P. S. Steyn, Academic Press, New York, 1980, pp. 105-155.
- 3 J. M. Essigman, R. G. Croy, A. M. Nadzan, W. F. Busby, V. N. Reinhold, G. Büchi, and G. N. Wogan, *Proc. Natl. Acad. Sci. USA*, 1977, 74, 1870.
- 4 P. S. Steyn and R. Vleggaar, J. Chem. Soc., Perkin Trans. 1, 1974, 2250.
- 5 P. S. Steyn and R. Vleggaar, J. S. Afr. Chem. Inst., 1975, 28, 375.
- 6 R. M. Horak, P. S. Steyn, P. H. van Rooyen, R. Vleggaar, and C. J. Rabie, J. Chem. Soc., Chem. Commun., 1981, 1265.
- 7 R. M. Horak, P. S. Steyn, R. Vleggaar, and C. J. Rabie, S. Afr. J. Chem., 1982, 35, 60.
- 8 C. W. Holzapfel, P. S. Steyn, and I. F. H. Purchase, *Tetrahedron Lett.*, 1966, 2799.
- 9 J. V. Rodricks, E. Lustig, A. D. Campbell, L. Stoloff, and K. R. Henery-Logan, *Tetrahedron Lett.*, 1968, 2975.
- 10 K. G. R. Pachler and P. L. Wessels, J. Magn. Reson., 1973, 12, 337; 1977, 28, 53; T. G. Dekker, K. G. R. Pachler, and P. L. Wessels, Org. Magn. Reson., 1976, 8, 530.
- 11 J. S. E. Holker, R. D. Lapper, and T. J. Simpson, J. Chem. Soc., Perkin Trans. 1, 1974, 2135.
- 12 K. G. R. Pachler, P. S. Steyn, R. Vleggaar, P. L. Wessels, and D. B. Scott, J. Chem. Soc., Perkin Trans. 1, 1976, 1182.
- 13 C. P. Gorst-Allman, P. S. Steyn, P. L. Wessels, and D. B. Scott, J. Chem. Soc., Perkin Trans. 1, 1978, 961.

- 14 R. A. Newmark and J. R. Hill, Org. Magn. Reson., 1980, 13, 40.
- 15 V. A. Chertkov and N. M. Sergeyev, J. Am. Chem. Soc., 1977, 99, 6750; H. Seel, R. Aydin, and H. Günther, Z. Naturforsch., Teil B, 1978, 33, 353.
- 16 K. G. R. Pachler, P. L. Wessels, J. Dekker, J. J. Dekker, and T. G. Dekker, *Tetrahedron Lett.*, 1976, 3059.
- 17 T. J. Simpson and D. J. Stenzel, J. Chem. Soc., Chem. Commun., 1982, 890.
- 18 E. Bardshiri and T. J. Simpson, J. Chem. Soc., Chem. Commun., 1981, 195.
- 19 A. J. Birch, J. Baldas, J. R. Hlubucek, T. J. Simpson, and P. W. Westerman, J. Chem. Soc., Perkin Trans. 1, 1976, 898.
- 20 D. C. Neethling and R. M. McGrath, Can. J. Microbiol., 1977, 23, 856.

Received 10th December 1982; Paper 2/2063